OpenFOAM을 이용한 규칙파 중 원형 기둥에서의 파랑 상호작용에 관한 수치해석

2016.09.30

한국해양대학교 송성진, 박선호

5th OKUCC

- 1. Introduction
- 2. Numerical modeling
 - Mesh generation & Boundary conditions
 - Numerical methods
 - Wave generation & absorption in the wave tank
- 3. Numerical validations
 - Computational conditions
 - Validations for wave propagation
- 4. Results & discussion
- 5. Conclusions

Research background

- ·해양 환경에서 파랑은 해양 구조물에 예기치 못한 손상을 초래할 수 있음
 - 설계단계에서 파랑하중과 소상파고(Wave run-up) 예측은 비용 및 안정성에서 매우 중요
 - 원형 실린더에 대한 소상파고는 물리적 또는 수치적으로 연구가 지속적으로 진행 중
- 전산유체역학에 대한 의존도가 지속적으로 증가하는 중
 - 물리수조를 이용한 모형실험 시 실제적인 파랑환경 재현 등에 어려움이 있음
 - 파랑과 구조물의 상호작용을 포함한 비선형성 거동을 예측하기 위해 전산유체역학을 사용

□ Objective

- ·규칙파 중 원형 실린더 구조물에 발생하는 wave run-up 에 대한 수치적 해석
- ·규칙파랑 재현을 통해 수치파랑수조의 수치기법 검증

Numerical modeling

Mesh generation & boundary conditions

- Mesh generation (Number of mesh : 3.1M)
 - blockMesh : Structured block mesh generation
 - snappyHexMesh : Automatic mesh generation
 - \rightarrow Unstructured hanging node mesh & cut cell mesh

* D = the diameter of the cylinder diameter (16m)

Numerical methods

- Turbulence model : RNG $k \varepsilon$ model
- · P-V coupling : PIMPLE (hybrid method between PISO and SIMPLE)
- Free surface : VOF (Volume Of Fluid)
- · Convection term : second order differencing scheme (limitedLinear)
- Diffusion term : upwind scheme

- □ Computational conditions (27th ITTC OEC Benchmark study)
 - · Main particulars of single/four cylinders

Description	Symbol [unit]	Prototype	Single / four cylinder model (MOERI)		
Diameter	D[m]	16	0.318		
Draft	$T_d [m]$	24	0.477		
Scale	Г	-	1/50.31		

· Incident wave conditions

T (s)	H/L	k_0A	KC	k_0r	L (m)	D/L	H (m)	A (m)
7s		0.1	0.5003	0.657	76.44	0.21	2.548	1.274
9s	1/30	0.2	0.8270	0.398	126.36	0.13	4.212	2.106
15s		0.3	2.2973	0.143	351.00	0.046	11.700	5.850

Grid sizes

Grid system	$L/\Delta x$	H/Δz	$\Delta x/\Delta z$	<i>T</i> /Δt	Turbulence model
Coarse	101(1.25 <i>m</i>)	3(1.25 <i>m</i>)			
Medium	202(0.626 <i>m</i>)	7(0.625 <i>m</i>)	1	1000	RNG $k - \varepsilon$
Fine	404(0.313 <i>m</i>)	13(0.313 <i>m</i>)			

Computational conditions

· Locations of wave probes around circular cylinders

□ Validations for wave propagation for stokes 2nd order wave theory

- Grid convergence (probed at the center point of the cylinder)
 - At least the medium mesh should be considered

(a) Time series of the wave elevation (b) Enla

(b) Enlarge two consecutive crests

 \Box Validations for wave propagation for stokes 2nd order wave theory

- Time steps per one wave period (simulation time=12 periods)
 - One wave period is resolved by 1,000 time steps

(b) Enlarge two consecutive crest

] Validations for wave propagation for stokes 2nd order wave theory

- Wave period = 7s and 15s with fine mesh and medium mesh, respectively
- · Wave elevation at the computational zone

\Box RAOs and QTFs of surface elevations and wave forces

- · Analysis method
 - $RAO = A^{(1)}/A_0$
 - $QTF = A^{(2)} * r/A_0^2$
- $A^{(n)}$ = the *n*th harmonic amplitudes of the disturbed elevation A_0 = the 1st harmonic amplitude of the incident(undisturbed) wave r = the radius of the cylinder
- · The Experimental data was from Sun et al., (2016)

(a) Choose an usable time window

(b) spectral analysis by a Fast Fourier Transform (FFT)

TRAOS and QTFs of surface elevations and wave forces at H/L = 1/30

· RAOs and QTFs of wave forces for 3 different periods

TAOS and QTFs of surface elevations and wave forces at H/L = 1/30

· RAOs and QTFs of surface elevations for 3 different periods

The RAOs and QTFs of surface elevations and wave forces at H/L = 1/30

· RAOs and QTFs of surface elevations for 3 different periods

- 🗆 규칙파랑 생성 및 검증
 - · 파 경사가 H/L=1/30 일 때, 최소 medium 격자 사이즈를 사용
 - · 추후 높은 경사도를 가지는 파에 대한 파랑 생성 검증이 필요
- □ 파랑 구조물 상호 작용
 - · 소상파고와 파랑하중의 1차 조화성분은 실험 값과 대체적으로 비슷한 경향을 보임 (최대오차 12.6%)
 - ightarrow 파수 (k_o) 가 커질수록 실린더 정면에서의 소상파고 및 수평하중은 증가, 수직하중은 감소
 - · 소상파고의 2차 조화성분은 실험 파수가 커질 수록 오차 범위가 커짐 (최대오차 147.9%)
 - ·관성력이 지배적인 KC<2 인 파랑 조건에서도 높은 주파수의 파 산란효과가 약하게 나타남
- □ 향후 연구 계획
 - 다양한 파랑 환경에 대해 수직 실린더와 파랑의 상호작용 검증
 - · 고정된 반 잠수식 구조물에 대한 파랑의 상호작용 분석을 통해 air-gap 예측

THANK YOU Q&A